\(\int \frac {1}{\sqrt {d+e x} (a+c x^2)^{3/2}} \, dx\) [689]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 331 \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\frac {(a e+c d x) \sqrt {d+e x}}{a \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}-\frac {\sqrt {c} d \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {\sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \]

[Out]

(c*d*x+a*e)*(e*x+d)^(1/2)/a/(a*e^2+c*d^2)/(c*x^2+a)^(1/2)-d*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/
2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*c^(1/2)*(e*x+d)^(1/2)*(1+c*x^2/a)^(1/2)/(a*e^2+c*d^2)/(-a)^(1/2
)/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)+EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2
)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(1+c*x^2/a)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/
2)))^(1/2)/(-a)^(1/2)/c^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {755, 858, 733, 435, 430} \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=-\frac {\sqrt {c} d \sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {a+c x^2} \left (a e^2+c d^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}}+\frac {\sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {a+c x^2} \sqrt {d+e x}}+\frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )} \]

[In]

Int[1/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]

[Out]

((a*e + c*d*x)*Sqrt[d + e*x])/(a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) - (Sqrt[c]*d*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/
a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*(
c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2]) + (Sqrt[(Sqrt[c]*(d + e*x))
/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*EllipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a
*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[-a]*Sqrt[c]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 755

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(a*e + c*d*x)*
((a + c*x^2)^(p + 1)/(2*a*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[1/(2*a*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^
m*Simp[c*d^2*(2*p + 3) + a*e^2*(m + 2*p + 3) + c*e*d*(m + 2*p + 4)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[
{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(a e+c d x) \sqrt {d+e x}}{a \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}-\frac {\int \frac {-\frac {a e^2}{2}+\frac {1}{2} c d e x}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{a \left (c d^2+a e^2\right )} \\ & = \frac {(a e+c d x) \sqrt {d+e x}}{a \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {\int \frac {1}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{2 a}-\frac {(c d) \int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx}{2 a \left (c d^2+a e^2\right )} \\ & = \frac {(a e+c d x) \sqrt {d+e x}}{a \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}-\frac {\left (\sqrt {c} d \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \left (c d^2+a e^2\right ) \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {a+c x^2}}+\frac {\left (\sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \\ & = \frac {(a e+c d x) \sqrt {d+e x}}{a \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}-\frac {\sqrt {c} d \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {\sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.24 (sec) , antiderivative size = 430, normalized size of antiderivative = 1.30 \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\frac {e \left (\sqrt {c} d-i \sqrt {a} e\right ) \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} x+i \sqrt {c} d \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )+\sqrt {a} e \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right ),\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{a e \left (\sqrt {c} d-i \sqrt {a} e\right ) \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \sqrt {d+e x} \sqrt {a+c x^2}} \]

[In]

Integrate[1/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]

[Out]

(e*(Sqrt[c]*d - I*Sqrt[a]*e)*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*x + I*Sqrt[c]*d*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x
))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (
I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] + Sqrt[a]*e*Sqrt[(e
*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*Ellipt
icF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a
]*e)])/(a*e*(Sqrt[c]*d - I*Sqrt[a]*e)*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[d + e*x]*Sqrt[a + c*x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(686\) vs. \(2(271)=542\).

Time = 2.37 (sec) , antiderivative size = 687, normalized size of antiderivative = 2.08

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}\, \left (-\frac {2 \left (c e x +c d \right ) \left (-\frac {d x}{2 a \left (e^{2} a +c \,d^{2}\right )}-\frac {e}{2 \left (e^{2} a +c \,d^{2}\right ) c}\right )}{\sqrt {\left (x^{2}+\frac {a}{c}\right ) \left (c e x +c d \right )}}+\frac {2 \left (\frac {1}{a}-\frac {e^{2}}{2 \left (e^{2} a +c \,d^{2}\right )}-\frac {c \,d^{2}}{a \left (e^{2} a +c \,d^{2}\right )}\right ) \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}-\frac {e c d \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{a \left (e^{2} a +c \,d^{2}\right ) \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(687\)
default \(\frac {\left (-\sqrt {-a c}\, \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{3}-\sqrt {-a c}\, \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) c \,d^{2} e +a c \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) d \,e^{2}+\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) c^{2} d^{3}+c^{2} d \,e^{2} x^{2}+a c \,e^{3} x +c^{2} d^{2} e x +d \,e^{2} a c \right ) \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}{c e a \left (e^{2} a +c \,d^{2}\right ) \left (c e \,x^{3}+c d \,x^{2}+a e x +a d \right )}\) \(696\)

[In]

int(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((e*x+d)*(c*x^2+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)*(-2*(c*e*x+c*d)*(-1/2*d/a/(a*e^2+c*d^2)*x-1/2*e/(a*e^2
+c*d^2)/c)/((x^2+1/c*a)*(c*e*x+c*d))^(1/2)+2*(1/a-1/2*e^2/(a*e^2+c*d^2)-1/a/(a*e^2+c*d^2)*c*d^2)*(d/e-(-a*c)^(
1/2)/c)*((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)
/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)*EllipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1
/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))-e*c*d/a/(a*e^2+c*d^2)*(d/e-(-a*c)^(1/2)/c)*((x+d/e)/(
d/e-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(
1/2)/c))^(1/2)/(c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)*((-d/e-(-a*c)^(1/2)/c)*EllipticE(((x+d/e)/(d/e-(-a*c)^(1/2)/c
))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))+(-a*c)^(1/2)/c*EllipticF(((x+d/e)/(d/e-(-a*c)^(1
/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 291, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\frac {{\left (a c d^{2} + 3 \, a^{2} e^{2} + {\left (c^{2} d^{2} + 3 \, a c e^{2}\right )} x^{2}\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right ) + 3 \, {\left (c^{2} d e x^{2} + a c d e\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right )\right ) + 3 \, {\left (c^{2} d e x + a c e^{2}\right )} \sqrt {c x^{2} + a} \sqrt {e x + d}}{3 \, {\left (a^{2} c^{2} d^{2} e + a^{3} c e^{3} + {\left (a c^{3} d^{2} e + a^{2} c^{2} e^{3}\right )} x^{2}\right )}} \]

[In]

integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

1/3*((a*c*d^2 + 3*a^2*e^2 + (c^2*d^2 + 3*a*c*e^2)*x^2)*sqrt(c*e)*weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*
e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), 1/3*(3*e*x + d)/e) + 3*(c^2*d*e*x^2 + a*c*d*e)*sqrt(c*e)*weierstrassZ
eta(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2
)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), 1/3*(3*e*x + d)/e)) + 3*(c^2*d*e*x + a*c*e^2)*sqrt(c*x^2 + a)*sq
rt(e*x + d))/(a^2*c^2*d^2*e + a^3*c*e^3 + (a*c^3*d^2*e + a^2*c^2*e^3)*x^2)

Sympy [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int \frac {1}{\left (a + c x^{2}\right )^{\frac {3}{2}} \sqrt {d + e x}}\, dx \]

[In]

integrate(1/(c*x**2+a)**(3/2)/(e*x+d)**(1/2),x)

[Out]

Integral(1/((a + c*x**2)**(3/2)*sqrt(d + e*x)), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (c x^{2} + a\right )}^{\frac {3}{2}} \sqrt {e x + d}} \,d x } \]

[In]

integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)

Giac [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (c x^{2} + a\right )}^{\frac {3}{2}} \sqrt {e x + d}} \,d x } \]

[In]

integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int \frac {1}{{\left (c\,x^2+a\right )}^{3/2}\,\sqrt {d+e\,x}} \,d x \]

[In]

int(1/((a + c*x^2)^(3/2)*(d + e*x)^(1/2)),x)

[Out]

int(1/((a + c*x^2)^(3/2)*(d + e*x)^(1/2)), x)